Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Res Sq ; 2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2320852

ABSTRACT

The mechanism of syncytium formation, caused by spike-induced cell-cell fusion in severe COVID-19, is largely unclear. Here we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical host factor exploited by SARS-CoV-2 to enhance spike’s fusogenic activity. HS binds spike to facilitate ACE2 clustering, generating synapse-like cell-cell contacts to promote fusion pore formation. ACE2 clustering, and thus, syncytium formation is significantly mitigated by chemical or genetic elimination of cell surface HS, while in a cell-free system consisting of purified HS, spike, and lipid-anchored ACE2, HS directly induces ACE2 clustering. Importantly, the interaction of HS with spike allosterically enables a conserved ACE2 linker in receptor clustering, which concentrates spike at the fusion site to overcome fusion-associated activity loss. This fusion-boosting mechanism can be effectively targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice.

2.
Front Cardiovasc Med ; 10: 1117254, 2023.
Article in English | MEDLINE | ID: covidwho-2287079

ABSTRACT

Background: The increased risk of cardiovascular events in patients prescribed macrolides has been subject to debate for decades. Methods: Medline, EMBASE databases and ClinicalTrials.gov were searched from inception until August 31, 2022 for studies investigating the link between macrolides and cardiovascular risk. A meta-analysis was performed using a random-effects model. Results: A total of 80 studies involving 39,374,874 patients were included. No association was found between macrolides and all-cause death. However, compared with the non-macrolide group, macrolides were associated with a significantly increased risk of ventricular arrhythmia or sudden cardiac death (VA or SCD) (azithromycin, relative ratio [RR]: 1.53; 95% confidence interval [CI]: 1.19 to 1.97; clarithromycin, RR: 1.52; 95% CI: 1.07 to 2.16). Besides, administration of macrolides was associated with a higher risk of cardiovascular disease (CVD) death (azithromycin, RR: 1.63; 95% CI: 1.17 to 2.27) and a slightly increased risk of myocardial infarction (MI) (azithromycin, RR: 1.08; 95% CI: 1.02 to 1.15). Interestingly, no association was observed between roxithromycin and adverse cardiac outcomes. Increased risk of VA or SCD was observed for recent or current use of macrolides, MI for former use, and CVD death for current use. Conclusion: Administration of macrolide antibiotics and timing of macrolide use are associated with increased risk for SCD or VTA and cardiovascular death, but not all-cause death.

3.
Front Immunol ; 14: 1107639, 2023.
Article in English | MEDLINE | ID: covidwho-2261428

ABSTRACT

Neutralizing antibody (NtAb) levels are key indicators in the development and evaluation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. Establishing a unified and reliable WHO International Standard (IS) for NtAb is crucial for the calibration and harmonization of NtAb detection assays. National and other WHO secondary standards are key links in the transfer of IS to working standards but are often overlooked. The Chinese National Standard (NS) and WHO IS were developed by China and WHO in September and December 2020, respectively, the application of which prompted and coordinated sero-detection of vaccine and therapy globally. Currently, a second-generation Chinese NS is urgently required owing to the depletion of stocks and need for calibration to the WHO IS. The Chinese National Institutes for Food and Drug Control (NIFDC) developed two candidate NSs (samples 33 and 66-99) traced to the IS according to the WHO manual for the establishment of national secondary standards through a collaborative study of nine experienced labs. Either NS candidate can reduce the systematic error among different laboratories and the difference between the live virus neutralization (Neut) and pseudovirus neutralization (PsN) methods, ensuring the accuracy and comparability of NtAb test results among multiple labs and methods, especially for samples 66-99. At present, samples 66-99 have been approved as the second-generation NS, which is the first NS calibrated tracing to the IS with 580 (460-740) International Units (IU)/mL and 580 (520-640) IU/mL by Neut and PsN, respectively. The use of standards improves the reliability and comparability of NtAb detection, ensuring the continuity of the use of the IS unitage, which effectively promotes the development and application of SARS-CoV-2 vaccines in China.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Calibration , Reproducibility of Results , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , China , World Health Organization
4.
Viruses ; 15(3)2023 03 02.
Article in English | MEDLINE | ID: covidwho-2254712

ABSTRACT

Compared to other vaccines, the inherent properties of messenger RNA (mRNA) vaccines and their interaction with lipid nanoparticles make them considerably unstable throughout their life cycles, impacting their effectiveness and global accessibility. It is imperative to improve mRNA vaccine stability and investigate the factors influencing stability. Since mRNA structure, excipients, lipid nanoparticle (LNP) delivery systems, and manufacturing processes are the primary factors affecting mRNA vaccine stability, optimizing mRNA structure and screening excipients can effectively improve mRNA vaccine stability. Moreover, improving manufacturing processes could also prepare thermally stable mRNA vaccines with safety and efficacy. Here, we review the regulatory guidance associated with mRNA vaccine stability, summarize key factors affecting mRNA vaccine stability, and propose a possible research path to improve mRNA vaccine stability.


Subject(s)
Commerce , Excipients , Liposomes , RNA, Messenger/genetics , mRNA Vaccines , Vaccines, Synthetic/genetics
5.
mBio ; : e0323821, 2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-2275679

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a serious threat to global public health, underscoring the urgency of developing effective therapies. Therapeutics and, more specifically, direct-acting antiviral development are still very much in their infancy. Here, we report that two hepatitis C virus (HCV) fusion inhibitors identified in our previous study, dichlorcyclizine and fluoxazolevir, broadly block human coronavirus entry into various cell types. Both compounds were effective against various human-pathogenic CoVs in multiple assays based on vesicular stomatitis virus (VSV) pseudotyped with the spike protein and spike-mediated syncytium formation. The antiviral effects were confirmed in SARS-CoV-2 infection systems. These compounds were equally effective against recently emerged variants, including the delta variant. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket near the fusion peptide of S protein, consistent with their potential mechanism of action as fusion inhibitors. In summary, these fusion inhibitors have broad-spectrum antiviral activities and may be promising leads for treatment of SARS-CoV-2, its variants, and other pathogenic CoVs. IMPORTANCE SARS-CoV-2 is an enveloped virus that requires membrane fusion for entry into host cells. Since the fusion process is relatively conserved among enveloped viruses, we tested our HCV fusion inhibitors, dichlorcyclizine and fluoxazolevir, against SARS-CoV-2. We performed in vitro assays and demonstrated their effective antiviral activity against SARS-CoV-2 and its variants. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket in spike protein to exert their inhibitory effect on the fusion step. These data suggest that both dichlorcyclizine and fluoxazolevir are promising candidates for further development as treatment for SARS-CoV-2.

6.
Emerg Microbes Infect ; : 1-11, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2232612

ABSTRACT

Over one billion people have received 2-3 dosages of an inactivated COVID-19 vaccine for basic immunization. Whether a booster dose should be delivered to protect against the Omicron variant and its sub-lineages, remains controversial. Here, we tested different vaccine platforms targeting the ancestral or Omicron strain as a secondary booster of the ancestral inactivated vaccine in mice. We found that the Omicron-adapted inactivated viral vaccine promoted a neutralizing antibody response against Omicron in mice. Furthermore, heterologous immunization with COVID-19 vaccines based on different platforms remarkably elevated the levels of cross- neutralizing antibody against Omicron and its sub-lineages. Omicron-adapted vaccines based on heterologous platforms should be prioritized in future vaccination strategies to control COVID-19.

7.
MedComm ; 3(4), 2022.
Article in English | EuropePMC | ID: covidwho-2147815

ABSTRACT

Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID‐19) vaccine candidates. To optimize the immunization strategy of the novel mRNA‐based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID‐19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA‐RBD) and protein subunit vaccine (PS‐RBD) in mice. Compared with homologous immunization of RNA‐RBD or PS‐RBD, heterologous prime‐boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody‐dependent cell‐mediated cytotoxicity for “PS‐RBD prime, RNA‐RBD boost” and robust Th1 type cellular response for “RNA‐RBD prime, PS‐RBD boost”. Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1‐type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein‐based COVID‐19 vaccines. The immunogenicity of vaccines can be enhanced by the optimization of immunization strategies. In this paper, we investigated the immunogenicity of different combined regimens with the mRNA vaccine RNA‐RBD and protein subunit vaccine PS‐RBD. The result showed that compared with homologous immunization, heterologous prime‐boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance NAb and Th1 cellular response, but immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses and Th1 cellular response.

8.
Vaccines (Basel) ; 10(7)2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-2033157

ABSTRACT

The BCG vaccine is prepared from a weakened strain of Mycobacterium bovis (M. bovis), a bacterium closely related to Mycobacterium tuberculosis (MTB), which causes tuberculosis (TB). The vaccine was developed over 13 years, from 1908 to 1921, in the French Institut Pasteur by Léon Charles Albert Calmette and Jean-Marie Camille Guérin, who named the product Bacillus Calmette-Guérin (BCG). BCG, the only licensed vaccine currently available to prevent TB, is given to infants at high risk of TB shortly after birth to protect infants and young children from pulmonary, meningeal, and disseminated TB. The BCG vaccine, one of the safest and most widely used live attenuated vaccines in the world, recently celebrated its 100th anniversary (from 1921 to 2021); its record of use in preventing TB in China is also approaching 100 years. In 2022, a new century of BCG vaccine immunization will begin. In this article, we briefly review the history of BCG vaccine use in China, describe its current status, and offer a preliminary outlook on the future of the vaccine, to provide BCG researchers with a clearer understanding of its use in China.

9.
Front Immunol ; 13: 949248, 2022.
Article in English | MEDLINE | ID: covidwho-2022731

ABSTRACT

To cope with the decline in COVID-19 vaccine-induced immunity caused by emerging SARS-CoV-2 variants, a heterologous immunization regimen using chimpanzee adenovirus vectored vaccine expressing SARS-CoV-2 spike (ChAd-S) and an inactivated vaccine (IV) was tested in mice and non-human primates (NHPs). Heterologous regimen successfully enhanced or at least maintained antibody and T cell responses and effectively protected against SARS-CoV-2 variants in mice and NHPs. An additional heterologous booster in mice further improved and prolonged the spike-specific antibody response and conferred effective neutralizing activity against the Omicron variant. Interestingly, priming with ChAd-S and boosting with IV reduced the lung injury risk caused by T cell over activation in NHPs compared to homologous ChAd-S regimen, meanwhile maintained the flexibility of antibody regulation system to react to virus invasion by upregulating or preserving antibody levels. This study demonstrated the satisfactory compatibility of ChAd-S and IV in prime-boost vaccination in animal models.


Subject(s)
Adenoviruses, Simian , COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization , Macaca , Mice , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
10.
Microbiol Spectr ; 10(5): e0226322, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019798

ABSTRACT

We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Interleukin-17 , Virus Shedding , Virulence , COVID-19 Vaccines , Tumor Necrosis Factor-alpha , Macaca mulatta , Interferon-gamma , Disease Models, Animal
11.
PLoS One ; 17(8): e0272364, 2022.
Article in English | MEDLINE | ID: covidwho-1987156

ABSTRACT

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Subject(s)
Bacteriophages , COVID-19 , Single-Domain Antibodies , Antibodies, Neutralizing , Antibodies, Viral , Bacteriophages/metabolism , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
12.
Front Immunol ; 13: 814365, 2022.
Article in English | MEDLINE | ID: covidwho-1952314

ABSTRACT

To effectively control and prevent the pandemic of coronavirus disease 2019 (COVID-19), suitable vaccines have been researched and developed rapidly. Currently, 31 COVID-19 vaccines have been approved for emergency use or authorized for conditional marketing, with more than 9.3 billion doses of vaccines being administered globally. However, the continuous emergence of variants with high transmissibility and an ability to escape the immune responses elicited by vaccines poses severe challenges to the effectiveness of approved vaccines. Hundreds of new COVID-19 vaccines based on different technology platforms are in need of a quick evaluation for their efficiencies. Selection and enrollment of a suitable sample of population for conducting these clinical trials is often challenging because the pandemic so widespread and also due to large scale vaccination. To overcome these hurdles, methods of evaluation of vaccine efficiency based on establishment of surrogate endpoints could expedite the further research and development of vaccines. In this review, we have summarized the studies on neutralizing antibody responses and effectiveness of the various COVID-19 vaccines. Using this data we have analyzed the feasibility of establishing surrogate endpoints for evaluating the efficacy of vaccines based on neutralizing antibody titers. The considerations discussed here open up new avenues for devising novel approaches and strategies for the research and develop as well as application of COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Biomarkers , COVID-19/prevention & control , Feasibility Studies , Humans , SARS-CoV-2
13.
ACS Infect Dis ; 8(6): 1191-1203, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1873405

ABSTRACT

SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.


Subject(s)
COVID-19 Drug Treatment , Percutaneous Coronary Intervention , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Drug Repositioning/methods , Humans , Pandemics , SARS-CoV-2 , Serine Endopeptidases
14.
Vaccines ; 10(5):825, 2022.
Article in English | ProQuest Central | ID: covidwho-1871305

ABSTRACT

Tuberculosis (TB), caused by the human pathogen Mycobacterium tuberculosis (Mtb), is an infectious disease that presents a major threat to human health. Bacillus Calmette-Guérin (BCG), the only licensed TB vaccine, is ineffective against latent TB infection, necessitating the development of further TB drugs or therapeutic vaccines. Herein, we evaluated the therapeutic effect of a novel subunit vaccine AEC/BC02 after chemotherapy in a spontaneous Mtb relapse model. Immunotherapy followed 4 weeks of treatment with isoniazid and rifapentine, and bacterial loads in organs, pathological changes, and adaptive immune characteristics were investigated. The results showed slowly increased bacterial loads in the spleen and lungs of mice inoculated with AEC/BC02 with significantly lower loads than those of the control groups. Pathological scores for the liver, spleen, and lungs decreased accordingly. Moreover, AEC/BC02 induced antigen-specific IFN-γ-secreting or IL-2-secreting cellular immune responses, which decreased with the number of immunizations and times. Obvious Ag85b- and EC-specific IgG were observed in mice following the treatment with AEC/BC02, indicating a significant Th1-biased response. Taken together, these data suggest that AEC/BC02 immunotherapy post-chemotherapy may shorten future TB treatment.

15.
Virol J ; 19(1): 86, 2022 05 20.
Article in English | MEDLINE | ID: covidwho-1854813

ABSTRACT

To investigate the protective efficacy and mechanism of ZF2001 (a protein subunit vaccine with conditional approval in China) to SARS-CoV-2 Delta variant-induced severe pneumonia, the lethal challenge model of K18-hACE2 transgenic mice was used in this study. An inactivated-virus vaccine at the research and development stage (abbreviated as RDINA) was compared to ZF2001. We found that ZF2001 and RDINA could provide the protective effect against Delta variant-induced severe cases, as measured by the improved survival rates, the reduced virus loads, the alleviated lung histopathology and the high neutralizing antibody geomean titers, compared to aluminum adjuvant group. To prevent and control Omicron or other variant epidemics, further improvements in vaccine design and compatibilities with the novel adjuvant are required to achieve better immunogenicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , Melphalan , Mice , Mice, Transgenic , Vaccines, Inactivated , gamma-Globulins
16.
Proc Natl Acad Sci U S A ; 119(18): e2201433119, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1815698

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Camelus , Humans , Mice , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics
17.
Sci Rep ; 12(1): 6294, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1805651

ABSTRACT

Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a heparan sulfate-spike complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar heparan sulfate-binding activities but with reduced affinity for DNA topoisomerases may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Heparin/metabolism , Heparitin Sulfate/metabolism , Humans , Mitoxantrone/pharmacology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
18.
Hum Vaccin Immunother ; 18(5): 2057161, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1795428

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate worldwide and a variety of variants have emerged. Variants of concern (VOC) designated by the World Health Organization (WHO) have triggered epidemic waves due to their strong infectivity or pathogenicity and potential immune escape, among other reasons. Although large-scale vaccination campaigns undertaken globally have contributed to the improved control of SARS-CoV-2, the efficacies of current vaccines against VOCs have declined to various degrees. In particular, the highly infectious Delta and Omicron variants have caused recent epidemics and prompted concerns about control measures. This review summarizes current VOCs, the protective efficacy of vaccines against VOCs, and the shortcomings in methods for evaluating vaccine efficacy. In addition, strategies for responding to variants are proposed for future epidemic prevention and control as well as for vaccine research and development.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Vaccine Efficacy
19.
J Chem Inf Model ; 62(8): 1988-1997, 2022 04 25.
Article in English | MEDLINE | ID: covidwho-1783923

ABSTRACT

The cell entry of SARS-CoV-2 has emerged as an attractive drug development target. We previously reported that the entry of SARS-CoV-2 depends on the cell surface heparan sulfate proteoglycan (HSPG) and the cortex actin, which can be targeted by therapeutic agents identified by conventional drug repurposing screens. However, this drug identification strategy requires laborious library screening, which is time consuming, and often limited number of compounds can be screened. As an alternative approach, we developed and trained a graph convolutional network (GCN)-based classification model using information extracted from experimentally identified HSPG and actin inhibitors. This method allowed us to virtually screen 170,000 compounds, resulting in ∼2000 potential hits. A hit confirmation assay with the uptake of a fluorescently labeled HSPG cargo further shortlisted 256 active compounds. Among them, 16 compounds had modest to strong inhibitory activities against the entry of SARS-CoV-2 pseudotyped particles into Vero E6 cells. These results establish a GCN-based virtual screen workflow for rapid identification of new small molecule inhibitors against validated drug targets.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Virus Internalization , Actins , Antiviral Agents/chemistry , Heparan Sulfate Proteoglycans , Humans , SARS-CoV-2/drug effects , Virus Internalization/drug effects , COVID-19 Drug Treatment
20.
Infect Drug Resist ; 15: 1225-1234, 2022.
Article in English | MEDLINE | ID: covidwho-1775530

ABSTRACT

Purpose: Polymorphisms in MBL2 may contribute to the susceptibility to tuberculosis. The aim of the present study was to determine the associations of the polymorphisms of five loci (rs1800450, rs1800451, rs7096206, rs7095891, and rs11003125) in the MBL2 gene with susceptibility to tuberculosis and specific lineages of Mycobacterium tuberculosis causing tuberculosis in the Uyghur population of Xinjiang, China. Methods: From January 2019 to January 2020, we enrolled 170 Uyghur tuberculosis patients as the case group and 147 Uyghur staff with no clinical symptoms as the control group from four designated tuberculosis hospitals in southern Xinjiang, China. The polymorphisms of five loci in MBL2 of human were detected by sequencing. Whole-genome sequencing was applied in 68 M. tuberculosis isolates from the case group and the data were used to perform genealogy analysis. Results: The distributions of allele and genotype frequencies of five loci in MBL2 varied little between the case and control groups and varied little among the groups, including those infected with different lineages of M. tuberculosis and the control (except those of rs11003125), the P values were all >0.05. The distribution of alleles of rs11003125 was statistically different between patients infected with lineages 3 and 4 M. tuberculosis (χ 2=7.037, P=0.008). The C allele and CC genotype of rs11003125 were found to be protective factors against lineage 4 infection when compared to lineage 3 (ORs were 0.190 and 0.158, respectively; 95% confidence intervals were 0.053~0.690 and 0.025~0.999, respectively). Conclusion: Our results suggested that human's susceptibility to tuberculosis is affected both by the host genetic polymorphisms and the lineage of the M. tuberculosis that people were exposed to. However, due to the limitation of the sample size in the present study, larger sample size and more rigorous design should be guaranteed in future studies.

SELECTION OF CITATIONS
SEARCH DETAIL